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Nonhyperbolic behavior in the thermostated Lorentz gas
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We show that nonhyperbolic behavior in the length-2 periodic orbits of the thermostated random Lorentz gas
occurs only at field strengths greater than unity. For the thermostatted periodic Lorentz gas the range of fields
is reduced further due to pruning. Stability analysis shows that there are three classes of period-2 orbits: elliptic
orbits and two different hyperbolic orbits. Within the nonergodic elliptic region, trajectories manifest complex
behavior that resembles that of perturbed resonant tori in Hamiltonian systems. We present a detailed dynami-
cal study of the nonhyperbolic regiof51063-651X99)14410-6

PACS numbegs): 05.45—a, 05.70.Ln

[. INTRODUCTION these maps is that the expanding and contracting directions
are aligned with the two coordinate axes everywhere in the
hase space. The global bifurcation behavior of these maps

studied extensively as a model for nonequilibrium steadyq gimijar to, but less complicated than, the original Lorentz
states[4,9-12. For the most frequently studied state andgaq |n particular, the elliptic region that we study here is
applied fieldse in the range 6<e<2.2, the phase space is gpsent from the map.

ergodic. At larger values of, the attractor is at first a fractal

The thermostated periodic Lorentz gik-8] has been

with dimension smaller than the phase space, and then the Il. THERMOSTATED LORENTZ GAS
attractor separates into two disjoint components: one an er-
godic chaotic fractal and the other a stable elliptic region. A. The model

The emergence of the stable elliptic region signals the break- |n the periodic Lorentz gas the wandering particle expe-
down of ergodic behavior in the thermostated periodic Lor-riences the combined effects of an external field and a ther-
entz gas[13]. A complicated region then follows that in- mostat as it moves and scatters from a hexagonal lattice of
cludes both chaotic components and stable periodic orbit$iard disk scatterers. The equations of motion with an exter-
often appearing together at the same value.dfinally the  nal field € in the x direction and an isokinetic thermostat are
complicated region gives way to stable periodic orbits thagiven by[3]

eventually end with a simple period-2 orbit. Increasing the

value of e still further introduces multiple bounces on the X=py, Px=Fx—e—ap,
same scatterer, with the high field limit being a creeping ) )
orbit that follows the curvature of each scatterer until it falls y=py, Ppy=Fy—apy 1

to the next scatterer. The creeping trajectory is made up of )
infinitely many bounces on each scatterer along a chaifnel Wherea=—ep,/p®. The presence of the thermostat ensures
the direction of the channel and the field are similar that the particle speed must be constant. For simplicity, we
The thermostated random Lorentz gas has been proposé¥e the speeg of the particle and its mass to be unity.
as a more realistic model of high dimensional nonequilib-INtégrating the equations of motion in polar coordinates, we
rium steady states as it remov@s at least minimizesthe ~ €an find the time evolution of the coordinates and the direc-
effects of periodicity. The Lyapunov spectrum has been caltion of the momentum:
culated using both kinetic theor{14,15 and numerical

simulation[16], and the results are in excellent agreement. Xl_xozlmsfn_el, 2)
However, it has been suggested that between particular pairs € sinby

of scatterers in the random Lorentz gas, there could exist

small elliptic regions that are disjoint nonergodic compo- _ =E(0 ~ 0o) 3)
nents[17] and that these may be present at all nonzero values YimYo= (0™ fo),

of the field. The existence of such regions would imply that

the thermostated random Lorentz gas is not ergodic. In this 01 6o

paper we explore this possibility by studying periodic orbits tar(? :tar< ?) exre(ti—to)], )

between individual pairs of scatterers as a function of sepa-
ration and orientation, assuming a cavity sufficiently largewherex, andy, are the initial coordinates of the particié,
enough to contain the orbit. The probability of finding a cav-is the initial direction of the momentum, arglis the initial
ity is inversely proportional to the size, so that cavities of alltime. These equations give valuesxqf, y;, and 6, at any
sizes are possible. time t,, after the initial time.

The Lorentz gas has also been used to construct mappings The geometry of a collision can be described by specify-
that contain many of the same physical features but are easigrg the point on the surface of the scatterer where the colli-
to analyze mathematically18]. The major advantage of sion takes place, and the angle of the momentum vector be-
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FIG. 2. Symbolic representation of the dynamics for the peri-
odic Lorentz gas. The central disk labeled 18 is the initial scatterer.
The label attached to the free flight is the label on the final scatterer.
For example, th€0-6) trajectory begins from 18 and then collides
with 0, then the origir(scatterer 18 moves to the old position of 0),
and the wandering particle moves to the left to collide with

FIG. 1. Geometry of a free flight between two scatterégsand ~ scatterer 6.
¢, are initial coordinates in the Poincasection andd), and ¢, are

the coordinates before the next collisi@his the distance between -1 2
centers of the two scatterers amndis the angle between the line Jec= o 1/’ (6)
joining the centers and theaxis.
fore collision (both angles are measured relative to the and the free flight from €, ¢o) t0 (65, b) is [3]
axi9). We take these angles as coordinates in a Poirsare (1,0
face of section. So, if the coordinates after one collision aré "
(09,¢0), then the coordinates before the ngxt collision are sin@ycod p1—0y)  — esinBysin( ¢y — bo)
(65,¢1), and these are related by the equations : ; ;
Sin 6y cog ¢p1— 6y) cog ¢o— )
. 1 . . =
Singg+ ;(00—00)—sm¢1=dsmao, sin( 65— o) cog ¢o— 6y)
€sin 6 cog 1 — ) cog ¢o— b;)
| n% d 5 %
+— . - =
COSdy ZIn sinf cos¢,=d cosay, (5

The stability matrix(or the Jacobianfor the mapM is the
whered is the distance between the centers of the two harghroduct of four of these matricdslcJ(2,1)JcJ;(1,0)] and
disk scatterers andy is the angle between theaxis and the s a function of the initial coordinatesg, ¢,). For periodic
line connecting the center of scatterer O to scatterésee  points of the map, the real part of the logarithms of the
Fig. 1). Here we take the radius of the disks as unity. In thegigenvalues of the Jacobian gives the Lyapunov expokent
collision ¢ is unchanged, bu; =2¢— 6= . times the periodr. For quasiperiodic trajectories, it is neces-

For the periodic Lorentz gas it is usual to define a sym-sary to consider multiple applications of the map, and take
bolic dynamics that reduces the level of description of a gethe long time limit, to obtain the Lyapunov exponefi$)].
neric trajectory to a list of symbols, each one representing ahe periodic (4-10) orbit has normal collisions with each
single free flight between two scatter¢dd. The symbol that  scatterer, so thaiy= ¢y, 0,=¢b; and 6, — 6,=—m,6,— 6}
is attached to a free flight is determined uniquely by the— o _ 0,=— . So Eq.(7) becomes
relative separation of the two scatterétisat is, the vector
from the center of the first scatterer to the center of the sec- sin 65 cos 65— 65)
ond (Fig. 2)]. Therefore, a finite length of trajectory has a

— e sin )} sin( 6y — o)

unique symbol sequence. Moreover, the phase space of the sinfo

Lorentz gas can be partitioned into regions, which contain all J1(1,0= L

the initial conditions that follow a particular symbol se- —sin(0o— 0o) — oS 8}~ 6p)
guence. This is summarized in Sec. Il A. €sinfy

®

Calculating the eigenvalues; of the Jacobian of the map-
We consider the stability of the first return mappik  ping for each periodic orbit gives the Lyapunov exponents
which consists of two free flights and two collisions. In the \;=(1/7)R€{In(A;)} and enables us to identify the stability
notation we have used, this mapping is6,(¢,) of the orbit. In general, the eigenvalues can be either real or
=M/(6q,do) and d,= 0y, and ¢,= ¢, constitutes a periodic complex. If the eigenvalue equationds= A g, then a nega-
orbit of length 2. The stability matrix for the collision is tive eigenvalue implies that the direction of the eigenvector

B. Stability
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FIG. 3. Full range of possible periodic orbits far=2+/3 and FIG. 4. Field dependence of the initial conditions for periodic
d=2.236 as a function of. The orbit markedl) is thee=0 orbit;  orbits for «=2/3, at different separation lengttes The curve
the orbit marked?) is the limiting hyperbolic orbit at=2.464; the  |abeledd, gives the initial¢ value as a function of field fod,
the orbit marked3) is the limit for the elliptic orbit ate=2.066. =3.6276. Other curves correspond dg=2.9318,d,=2.236,d,
The two horizontal lines represent the limiting orbit &t 1.623. =2.143, andds=2.05.d, is the maximum possible distance for the
Any orbit between(1) and(2) is hyperbolic and any orbit between existence of the elliptic region between the two scatterers. The
(2) and(3) is elliptic. Any orbit betweer{3) and the horizontal lines  curve « is the border between hyperbolic and elliptic periodic or-
has real negative eigenvalues, but has one positive Lyapunov expeits, the dashed curvg is the pruning caused by disk 2 for the
nent, so is hyperbolic. periodic Lorentz gas, and the curyds border between elliptic and

the return of hyperbolic orbits.

is reversed by the mapping, whereas there is no reversal for
a positive eigenvalue. An orbit for which at least one of thepjt. For high enough field, two different solutions exist. In-
Lyapunov exponents is positive is termed an unstable orbifgreasing the field further, the two solutions coalesce and dis-
If aII_ the Lyapunov exponents are negative the orbit is stablgappear, and n@4-10) periodic orbits exist. For very small
but if all the Lyapunov exponents are equal to zero the orbikeparations, the two orbits exist up to quite large fields. This
is neutrally stable. For a two-dimensional phase space, a p@nalysis is correct for small separations, but when the sepa-
riodic orbit with one positive and one negative Lyapunovration is greater than 3.6276, there is again only one solution
exponent is a hyperbolic point. If both Lyapunov exponentscorresponding to a hyperbolic orbit. This indicates that a

are equal to zero then the orbit is elliptic. second solution is possible only for scatterers that are close
enough.
[ll. PERIODIC ORBITS BETWEEN TWO SCATTERERS All of these features are presented in Fig. 4. Curdes

It ling to studv th iodic orbits bet correspond to solutions of Eq&) for different separations
W |sbr_rt10r_e| re\llea 'gg Otts udy the pelrlt(_) Ic Ior tl'f CWEEN, it d;>d;, ., and for fixede. The boundary between hy-
0 arbitrarily placed scatterers n isolation. in this way Weperbolic and elliptic orbits is represented by cuwgwhich

can investigate periodic orbits without considering the ef- : . . _
fects of pruning by other scatterers. For a given field, theCOnSIStS of the solutions of the equativel do)/dco=0 for

. . . . ) different separations. If there exists a solution for dnthen
maximum vertical displacement in a trajectory between tw P i

S %his is a peak of the functioa( ). This implies that there
scatterers Is given byr/ € [20]. _For two scatterers se parated must be a certain range efthat corresponds to two different
vertically, this trajectory consists of a horizontal flight from

the current to +o, a vertical flight of /e at + 2, and the values of¢,. Therefore, the curved; are divided into two

. parts by the curver. The upper part consists of hyperbolic
rettér;ugtci)gnn;; éc;rt]hsenjs\’;ﬁ\;gl?iﬁéﬁgé \i?ﬁtial conditions for orbits, while the lower part consists initially of elliptic orbits.

periodic orbits of length 2 between two disks with fixed The curved;=3.6276 is the limiting case, to the left of

separatiord and orientationy. Such orbits have normal col- which all solutions will be hyperbolic. In the periodic Lor-
EP . ' , entz gas, the pruning of trajectories by neighboring disks is
lisions with each scatterer so thét= 6, and ¢,= 6y— .

i inevitable. Therefore, the dashed cueorresponds to the
Equations(5) then become pruning caused by disk 2.
If the scatterer that causes the pruning is removed, we find
that there is a transition from elliptic to hyperbolic orbits at
9  the curve labeledy in Fig. 4. Below the curvey the orbit
again becomes hyperbolic. The linear stability analysis re-
sinfy’ veals that the curve is the border between complex eigen-
values and real negative eigenvalues. In the elliptic region,
These equations can be solved to fififland 6. Here we  where the eigenvalues are complex, the modulii of the eigen-
considerag=2/3, which for the periodic Lorentz gas cor- values are equal to 1, so the Lyapunov exponents are both
responds td4-10) orbits. zero. The complexity of the eigenvalues implies that the ini-
For small separation and external field, there is only ondial state vectors are rotated with each mapping, leading to
solution of Egs(9) that represents a hyperbolic periodic or- complex phase space structure within the elliptic region. De-

e(d sinag—sinfy—singy) = 65— 6,

sin 6}
exf e(d cosay—cosfy—cosh|)]=
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24 ; Solving Eqgs.(10) for a particular disk, a set of limiting val-
: ues of By, o) can be found. Each pair 0B, ¢) in the set
is the initial condition for the corresponding tangent orbit.
However, thanks to symmetry properties of the Lorentz gas,
we need only a few such sets to partition the phase space.
Indeed, the sets corresponding to the maximum valueof
for disks 0, 2, 4, and 6 can be used as sets for the minimum
value of g} for disks 0, 10, 8, and 6. We use here the trans-
formation 0y, ) —(— 6y, — ¢bg). For high enough field,
the combined effects of an external field and a thermostat
exclude the existence of the tangent trajectories correspond-
ing to the minimum values o), for disks 2 and 4. Accord-
0 1 2 3 4 5 ing to the transformation, they could be the sets for the maxi-
€ mum values of¢;, for disks 8 and 10. The previous sets can
FIG. 5. Border between hyperbolic and elliptic orbits at differ- again be used to partition the phase space for the second
ent relative orientations of the scatterets=7/4, a,=7/3,3  Symbol. Time reversibility of the system will play a role in
=ml2, ay=27/3, andas=37/4. The curve labeled, is the curve  this cas€21]. The time reversal is equivalent to the trans-
labelede in Fig. (3). The maximum separation lengths correspond-formation (6, o) — (8o + 7, o+ 7) so that the partitioning
ing to each angle ared;=ds=4.44,d,=d,=3.6276, andd; for the first symbol can be transformed into the partitioning
=3.14159. For all cases the two solutions emerge from the poinfor the second symbol. Embedding the two pictures in the
€=1.0,¢,=0. The maximum separation length far==/2 isd3  phase plane, we obtain the phase space partitioning for two
=m (wheree=1.0), which is the maximum vertical displacement. symbols. The partitioning of the phase space is illustrated in
) o ) i Fig. 6. For those partition elements that are hyperbolic, a
tails of this will be discussed in the Sec. IllB. _ single unstable periodic point exists in each region. The hy-
W_e study the existence qf two solupons for different ori- perbolic regiong4-10 and (2-8) [and the symmetry related
entations of scatterers. In Fig. 5 we display the cuwvor (8-2) and (10-4] may also contain a single elliptic fixed
different  orientation  angles = ml4, 042:77/_3” a3 point. This elliptic fixed point is associated with the noner-
=2, ay=2m/3, andas=3m/4. Maximum separations of godic elliptic region. The unstable periodic point of the
the two scatterers are given llf'®*= m/e cos@—m/2) so  10) region is labeled as and the elliptic fixed point is the
thatd; =ds=4.44,d,=d,;=3.6276, andd;=3.14159. For center of the elliptic region. Foe=2.35 the elliptic fixed
all cases the two solutions emerge at the p@ntl.0¢y  point is within the (4-10) partition, so is physically realiz-
=0. When the external field is normal to the orientation ofaple, whereas fog= 2.25 the elliptic fixed point is pruned by
the two disks,a=m/2, the maximum separation length is scatterer number 2. As shown in Fig. 4, for a certain range of
equal to the maximum vertical displacement of the wanderfields there will be no elliptic region in the phase space but
ing particle. Thusgds;=m whene=1.0. Furthermore, the lin- an unstable fixed point with negative eigenvalues. The struc-
ear stability analysis reveals more details on the structure afire of the non-ergodic elliptic region will be discussed in
the phase space. more detail in the next subsection.

1.8

0.6

0.0

A. Partitions of the phase space . .
P P B. Structure of the elliptic region

For the periodic Lorentz gas, the symbolic dynamics al-
lows us to express any path of the wandering particle by nuous time dynamics of the Lorentz gas on a surface of

sequence of symbols. This means that we can partition thSection We take this surface as the phase plane and the
phase space into regions for which trajectories follow thecollisioﬁ coordinates as phase variableg The F;Jhase portrait
same sequence of symbdig1]. For the periodic Lorentz of the Lorentz gas for periodic orbits of length 2 reveals

gas, it can be done effectively by taking the collision coor-; teresting properties of the dynamics. We concentrate on the
dinates as phase space variables. We consider partitioniﬁ " g prop . y j -
liptic region, in which the eigenvalues of the stability ma-

the phase space into regions for which each initial conditioqrix are complex and the ergodicity of the system breaks

begins with the same two symbols. down. The center of the elliptic region is the elliptic period-2

First we consider the partitioning for one symbol. In orderOrbit which is a sinale point in bhase space. Apart from the
to collide with a particular scatterer the wandering particle ’ > asingle p phase space. Apar .
center, a sufficient number of mappings of an initial condi-

must hit that scatterer with a certain valuedy. The maxi- tion all lie on a closed curve. This indicates the existence of

mum and minimum values o cqrrespond to the trajecto- a constraint surface associated with the elliptic orbits in the

ries that are tangent to the two sides of the scatterer, So thghysjete phase space. Further departure from the center re-

b1l 0 or |1~ 0| = /2. So Eqs(5) can then be rewritten g jt5jn 4 splitting of the closed curve into a band of separate

as islands on an elliptic band. It is reasonable to expect that the
orbit determined by the initial condition has a period equal to
the number of islands in the band. Numerical study is con-
sistent with this expectation. The center of each ellipse in the

: (100 band is a periodic orbit of length equal to the number of

sin 6o islands in the band. For some initial conditions we have a

The mapping 0,,®,)=M(6y,¢,) represents the con-

e(d sinag—sin ¢g= cosdy) = 65— 6y,

sin 6}

exf e(d cosag—cosgy+ sinby) =
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FIG. 7. Structure of the elliptic region witd=2.236 ande

=2.42. Near the center the orbit consists of seven separate islands,
while near the boundary the border consists of ten islands. Between
the two limits the region is structured with bands of eight and nine
islands sandwiched between ellipses. In the case of the eight island
band structure, the eight points composing a length-16 periodic or-
bit are visible at the center of each island. On the border, trajecto-
ries escape from the elliptic region from the hyperbolic points cre-
ated where the islands join.

sin(6-¢)

FIG. 6. Phase space partitioning for the initial conditions of played. For initial conditions near the elliptic fixed point, the
length-2 orbits in the periodic Lorentz gas. For example, those initrajectory of the collision point orbits the fixed point. The
tial conditions within the region labeled 2-8 produce a trajectory forband structure with the least number of islaridsven ap-
which the first two symbols are 2 then 8. For 2.25(a) the elliptic  pears near the center. For the next step the trajectory is con-
fixed point lies inside the 2-8 region and is thus pruned by scatterefined to an ellipse, outside of which is the band with 8 is-
number 2. The elliptic region that surrounds this point consists of 3ands. Periodic orbits of length eight are visible at the center
series of ellipses of increasing raditgetermined by the initial o each island. A single ellipse emerges again for next stage.
poing ending in a curvilinear four sided boundary. As a trajectory ,rther departure from the center causes the emergence of a
beginning on the boundary, in general, visits many points on thg, g \yith nine islands that are joined. The outermost band is
boundary, the fact that some of the boundary is pruned by scatter%e border of the elliptic region and has ten islands. As men-
2 effectively removes all elliptic orbits. The unstable periodic pointtioned before, the joins are hyperbolic points SO' that the
of the 4-10 region is labeled u. Fer=2.35 (b) the elliptic fixed . ! 4 ' .
point is within the 4-10 partition so is physically realizable, and all giaojﬁc:ggystef;s%?; :gg; ttl;](zsr;eIggi?g;ho_?ﬁe0;;?:;(125“;;3;

ellipses surrounding that fixed point that lie wholly within the 4-10f island to island i lockwise di . he ei |
partition are also physically realizable. For this value of the field, "0 1sland to island in a clockwise direction. The eigenval-

the boundary of the elliptic region is shaped like an irregular ellipse U€S for the mapping depend upon the initial condition and
vary from island to island, with approximately half of the

islands making a complex contribution to the eigenvalues

band structure in which the separate islands begin 10 join 8l the rest a real contribution to the eigenvalues. However,
their edges. The joins are hyperbolic points in the phase, ot |east one of the islands, the initial conditions within the
space, so they produce elliptic and hyperbolic points in equalyme jsjand can make either a complex or imaginary contri-
numbers. Numerical study showed that for certain approprip sion to the eigenvalues, depending upon the initial condi-
ate initial conditions even the individual ellipses in the bandi;o, Thus the stability varies from point to point on the ten
can be split into a number of separate rings. This clearlyq|,ngs put the average of the product of the modulii of the

@ndicates.th.e self—.similarity and fractal §tructyre of the Ork?itseigenvalues is equal to unity, so the Lyapunov exponent is
in the elliptic region. The number of rings in the band in- equal to zero.

creases as the initial condition departs further from the cen-
ter. But between these bands the trajectory is confined to a
single ellipse. The emergence of the bands with a greater
number of rings continues until the initial conditions reach  In summary, we have determined the range of parameters
the border of the elliptic region. All of the above featuresfor which the random Lorentz gas can have a nonergodic
closely resemble the behavior of resonant tori in Hamiltoniarcomponent surrounding the length-2 periodic orbits. There
systems under a small perturbatid®]. In Fig. 7 the struc- exists a maximum value for the separation of the digks
ture of the elliptic region at=2.42 andd=2.236 is dis- above which length-2 orbits are hyperbolic for the whole

IV. DISCUSSION AND CONCLUSIONS
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possible range of fields. On the other hand, the existence @he orbit (hyperbolic instability and eventually leads to the
the elliptic region is possible only for fields>1.0. Using  breakdown of elliptic behavior and the boundary between the
stability analysis we found that the length-2 periodic orbitselliptic and chaotic regions. As the initial conditions depart
can be either hyperbolic or elliptic. The initial hyperbolic from the center, elliptic orbits experience subsequent
and elliptic regions have been reported previously, but thehanges in structure, closely resembling the resonant tori in
existence of a small range of fields for which real negativeHamiltonian systems, splitting into separate ellipses, con-
eigenvalues occufand hence a return to hyperbolic orbits finement to a single ellipse, and again splitting into a greater
has not been observed. The hyperbolic orbits appear asumber of islands. Even the individual islands in the band
single points in the phase space, whereas the elliptic regiosplit into smaller islands, manifesting self-similarity, which
occupies a region of nonzero measure. In the elliptic regiomay be the sign of an underlying fractal-like structure.

the initial state vector rotates and dilates due to the complex

eigenvalues. Thls is u;ually observed in area preserving ACKNOWLEDGMENT
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