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Nonhyperbolic behavior in the thermostated Lorentz gas

H. Odbadrakh and G. P. Morriss
School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

~Received 23 March 1999; revised manuscript received 18 June 1999!

We show that nonhyperbolic behavior in the length-2 periodic orbits of the thermostated random Lorentz gas
occurs only at field strengths greater than unity. For the thermostatted periodic Lorentz gas the range of fields
is reduced further due to pruning. Stability analysis shows that there are three classes of period-2 orbits: elliptic
orbits and two different hyperbolic orbits. Within the nonergodic elliptic region, trajectories manifest complex
behavior that resembles that of perturbed resonant tori in Hamiltonian systems. We present a detailed dynami-
cal study of the nonhyperbolic region.@S1063-651X~99!14410-6#

PACS number~s!: 05.45.2a, 05.70.Ln
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I. INTRODUCTION

The thermostated periodic Lorentz gas@1–8# has been
studied extensively as a model for nonequilibrium stea
states@4,9–12#. For the most frequently studied state a
applied fieldse in the range 0<e<2.2, the phase space
ergodic. At larger values ofe, the attractor is at first a fracta
with dimension smaller than the phase space, and then
attractor separates into two disjoint components: one an
godic chaotic fractal and the other a stable elliptic regi
The emergence of the stable elliptic region signals the bre
down of ergodic behavior in the thermostated periodic L
entz gas@13#. A complicated region then follows that in
cludes both chaotic components and stable periodic or
often appearing together at the same value ofe. Finally the
complicated region gives way to stable periodic orbits t
eventually end with a simple period-2 orbit. Increasing t
value of e still further introduces multiple bounces on th
same scatterer, with the high field limit being a creep
orbit that follows the curvature of each scatterer until it fa
to the next scatterer. The creeping trajectory is made u
infinitely many bounces on each scatterer along a channe~if
the direction of the channel and the field are similar!.

The thermostated random Lorentz gas has been prop
as a more realistic model of high dimensional nonequi
rium steady states as it removes~or at least minimizes! the
effects of periodicity. The Lyapunov spectrum has been c
culated using both kinetic theory@14,15# and numerical
simulation @16#, and the results are in excellent agreeme
However, it has been suggested that between particular p
of scatterers in the random Lorentz gas, there could e
small elliptic regions that are disjoint nonergodic comp
nents@17# and that these may be present at all nonzero va
of the field. The existence of such regions would imply th
the thermostated random Lorentz gas is not ergodic. In
paper we explore this possibility by studying periodic orb
between individual pairs of scatterers as a function of se
ration and orientation, assuming a cavity sufficiently lar
enough to contain the orbit. The probability of finding a ca
ity is inversely proportional to the size, so that cavities of
sizes are possible.

The Lorentz gas has also been used to construct mapp
that contain many of the same physical features but are e
to analyze mathematically@18#. The major advantage o
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these maps is that the expanding and contracting direct
are aligned with the two coordinate axes everywhere in
phase space. The global bifurcation behavior of these m
is similar to, but less complicated than, the original Loren
gas. In particular, the elliptic region that we study here
absent from the map.

II. THERMOSTATED LORENTZ GAS

A. The model

In the periodic Lorentz gas the wandering particle exp
riences the combined effects of an external field and a th
mostat as it moves and scatters from a hexagonal lattic
hard disk scatterers. The equations of motion with an ex
nal field e in thex direction and an isokinetic thermostat a
given by @3#

ẋ5px , ṗx5Fx2e2apx ,

ẏ5py , ṗy5Fy2apy ~1!

wherea52epx /p2. The presence of the thermostat ensu
that the particle speed must be constant. For simplicity,
take the speedp of the particle and its mass to be unit
Integrating the equations of motion in polar coordinates,
can find the time evolution of the coordinates and the dir
tion of the momentum:

x12x05
1

e
ln

sinu1

sinu0
, ~2!

y12y05
1

e
~u12u0!, ~3!

tanS u1

2 D5tanS u0

2 Dexp@e~ t12t0!#, ~4!

wherex0 andy0 are the initial coordinates of the particle,u0
is the initial direction of the momentum, andt0 is the initial
time. These equations give values ofx1 , y1, andu1 at any
time t1, after the initial time.

The geometry of a collision can be described by spec
ing the point on the surface of the scatterer where the co
sion takes place, and the angle of the momentum vector
4021 © 1999 The American Physical Society
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4022 PRE 60H. ODBADRAKH AND G. P. MORRISS
fore collision ~both angles are measured relative to thex
axis!. We take these angles as coordinates in a Poincare´ sur-
face of section. So, if the coordinates after one collision
(u0 ,f0), then the coordinates before the next collision a
(u08 ,f1), and these are related by the equations

sinf01
1

e
~u082u0!2sinf15d sina0 ,

cosf01
1

e
lnS sinu08

sinu0
D 2cosf15d cosa0 , ~5!

whered is the distance between the centers of the two h
disk scatterers anda0 is the angle between thex axis and the
line connecting the center of scatterer 0 to scatterer 1~see
Fig. 1!. Here we take the radius of the disks as unity. In
collision f is unchanged, butu152f2u086p.

For the periodic Lorentz gas it is usual to define a sy
bolic dynamics that reduces the level of description of a
neric trajectory to a list of symbols, each one representin
single free flight between two scatterers@3#. The symbol that
is attached to a free flight is determined uniquely by
relative separation of the two scatterers@that is, the vector
from the center of the first scatterer to the center of the s
ond ~Fig. 2!#. Therefore, a finite length of trajectory has
unique symbol sequence. Moreover, the phase space o
Lorentz gas can be partitioned into regions, which contain
the initial conditions that follow a particular symbol s
quence. This is summarized in Sec. III A.

B. Stability

We consider the stability of the first return mappingM,
which consists of two free flights and two collisions. In th
notation we have used, this mapping is (u2 ,f2)
5M (u0 ,f0) andu25u0, andf25f0 constitutes a periodic
orbit of length 2. The stability matrix for the collision is

FIG. 1. Geometry of a free flight between two scatterers.u0 and
f0 are initial coordinates in the Poincare´ section andu08 andf1 are
the coordinates before the next collision.d is the distance betwee
centers of the two scatterers anda is the angle between the lin
joining the centers and thex axis.
e
e

d

e

-
-
a

e

c-

the
ll

JC5S 21 2

0 1D , ~6!

and the free flight from (u0 ,f0) to (u08 ,f1) is @3#

Jf~1,0!

5S sinu08 cos~f12u0!

sinu0 cos~f12u08!

2e sinu08 sin~f12f0!

cos~f02u08!

sin~u082u0!

e sinu0 cos~f12u08!

cos~f02u08!

cos~f02u08!

D .

~7!

The stability matrix~or the Jacobian! for the mapM is the
product of four of these matrices@JCJf(2,1)JCJf(1,0)# and
is a function of the initial coordinates (u0 ,f0). For periodic
points of the map, the real part of the logarithms of t
eigenvalues of the Jacobian gives the Lyapunov exponel
times the periodt. For quasiperiodic trajectories, it is nece
sary to consider multiple applications of the map, and ta
the long time limit, to obtain the Lyapunov exponents@19#.
The periodic (4210) orbit has normal collisions with eac
scatterer, so thatu05f0 ,u15f1 and u12u0852p,u22u18
5u02u1852p. So Eq.~7! becomes

Jf~1,0!5S sinu08 cos~u082u0!

sinu0

2e sinu08 sin~u082u0!

2sin~u082u0!

e sinu0

2cos~u082u0!
D .

~8!

Calculating the eigenvaluesL i of the Jacobian of the map
ping for each periodic orbit gives the Lyapunov expone
l i5(1/t)Re$ ln(Li)% and enables us to identify the stabilit
of the orbit. In general, the eigenvalues can be either rea
complex. If the eigenvalue equation isJe5Le, then a nega-
tive eigenvalue implies that the direction of the eigenvec

FIG. 2. Symbolic representation of the dynamics for the pe
odic Lorentz gas. The central disk labeled 18 is the initial scatte
The label attached to the free flight is the label on the final scatte
For example, the~0-6! trajectory begins from 18 and then collide
with 0, then the origin~scatterer 18 moves to the old position of 0
and the wandering particle moves to the left to collide w
scatterer 6.
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is reversed by the mapping, whereas there is no reversa
a positive eigenvalue. An orbit for which at least one of t
Lyapunov exponents is positive is termed an unstable o
If all the Lyapunov exponents are negative the orbit is sta
but if all the Lyapunov exponents are equal to zero the o
is neutrally stable. For a two-dimensional phase space, a
riodic orbit with one positive and one negative Lyapun
exponent is a hyperbolic point. If both Lyapunov expone
are equal to zero then the orbit is elliptic.

III. PERIODIC ORBITS BETWEEN TWO SCATTERERS

It is more revealing to study the periodic orbits betwe
two arbitrarily placed scatterers in isolation. In this way w
can investigate periodic orbits without considering the
fects of pruning by other scatterers. For a given field,
maximum vertical displacement in a trajectory between t
scatterers is given byp/e @20#. For two scatterers separate
vertically, this trajectory consists of a horizontal flight fro
the currentx to 1`, a vertical flight ofp/e at 1`, and the
return from1` to the newx value ~Fig. 3!.

Equations~5! can be used to find the initial conditions fo
periodic orbits of length 2 between two disks with fixe
separationd and orientationa. Such orbits have normal col
lisions with each scatterer so thatf05u0 and f15u082p.
Equations~5! then become

e~d sina02sinu02sinu08!5u082u0 ,
~9!

exp@e~d cosa02cosu02cosu08!#5
sinu08

sinu0
.

These equations can be solved to findu0 and u08 . Here we
considera052p/3, which for the periodic Lorentz gas co
responds to~4-10! orbits.

For small separation and external field, there is only o
solution of Eqs.~9! that represents a hyperbolic periodic o

FIG. 3. Full range of possible periodic orbits fora52p/3 and
d52.236 as a function ofe. The orbit marked~1! is thee50 orbit;
the orbit marked~2! is the limiting hyperbolic orbit ate52.464; the
the orbit marked~3! is the limit for the elliptic orbit ate52.066.
The two horizontal lines represent the limiting orbit ate51.623.
Any orbit between~1! and~2! is hyperbolic and any orbit betwee
~2! and~3! is elliptic. Any orbit between~3! and the horizontal lines
has real negative eigenvalues, but has one positive Lyapunov e
nent, so is hyperbolic.
for
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bit. For high enough field, two different solutions exist. I
creasing the field further, the two solutions coalesce and
appear, and no~4-10! periodic orbits exist. For very smal
separations, the two orbits exist up to quite large fields. T
analysis is correct for small separations, but when the se
ration is greater than 3.6276, there is again only one solu
corresponding to a hyperbolic orbit. This indicates tha
second solution is possible only for scatterers that are c
enough.

All of these features are presented in Fig. 4. Curvesdi
correspond to solutions of Eqs.~9! for different separations
with di.di 11, and for fixeda. The boundary between hy
perbolic and elliptic orbits is represented by curvea, which
consists of the solutions of the equation]e(f0)/]f050 for
different separations. If there exists a solution for anyd, then
this is a peak of the functione(f0). This implies that there
must be a certain range ofe that corresponds to two differen
values off0. Therefore, the curvesdi are divided into two
parts by the curvea. The upper part consists of hyperbol
orbits, while the lower part consists initially of elliptic orbits
The curved153.6276 is the limiting case, to the left o
which all solutions will be hyperbolic. In the periodic Lor
entz gas, the pruning of trajectories by neighboring disks
inevitable. Therefore, the dashed curveb corresponds to the
pruning caused by disk 2.

If the scatterer that causes the pruning is removed, we
that there is a transition from elliptic to hyperbolic orbits
the curve labeledg in Fig. 4. Below the curveg the orbit
again becomes hyperbolic. The linear stability analysis
veals that the curveg is the border between complex eige
values and real negative eigenvalues. In the elliptic reg
where the eigenvalues are complex, the modulii of the eig
values are equal to 1, so the Lyapunov exponents are
zero. The complexity of the eigenvalues implies that the i
tial state vectors are rotated with each mapping, leading
complex phase space structure within the elliptic region. D

o-

FIG. 4. Field dependence of the initial conditions for period
orbits for a52p/3, at different separation lengthsd. The curve
labeledd1 gives the initialf value as a function of field ford1

53.6276. Other curves correspond tod252.9318,d352.236,d4

52.143, andd552.05.d1 is the maximum possible distance for th
existence of the elliptic region between the two scatterers.
curve a is the border between hyperbolic and elliptic periodic o
bits, the dashed curveb is the pruning caused by disk 2 for th
periodic Lorentz gas, and the curveg is border between elliptic and
the return of hyperbolic orbits.
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tails of this will be discussed in the Sec. III B.
We study the existence of two solutions for different o

entations of scatterers. In Fig. 5 we display the curvea for
different orientation angles a15p/4, a25p/3, a3
5p/2, a452p/3, anda553p/4. Maximum separations o
the two scatterers are given bydi

max5p/e cos(ai2p/2) so
that d15d554.44, d25d453.6276, andd353.141 59. For
all cases the two solutions emerge at the pointe51.0,f0
50. When the external field is normal to the orientation
the two disks,a5p/2, the maximum separation length
equal to the maximum vertical displacement of the wand
ing particle. Thus,d35p whene51.0. Furthermore, the lin-
ear stability analysis reveals more details on the structur
the phase space.

A. Partitions of the phase space

For the periodic Lorentz gas, the symbolic dynamics
lows us to express any path of the wandering particle b
sequence of symbols. This means that we can partition
phase space into regions for which trajectories follow
same sequence of symbols@21#. For the periodic Lorentz
gas, it can be done effectively by taking the collision co
dinates as phase space variables. We consider partitio
the phase space into regions for which each initial condit
begins with the same two symbols.

First we consider the partitioning for one symbol. In ord
to collide with a particular scatterer the wandering parti
must hit that scatterer with a certain value ofu08 . The maxi-
mum and minimum values ofu08 correspond to the trajecto
ries that are tangent to the two sides of the scatterer, so
f1'u08 or uf12u08u5p/2. So Eqs.~5! can then be rewritten
as

e~d sina02sinf06cosu08!5u082u0 ,

exp@e~d cosa02cosf07sinu08!#5
sinu08

sinu0
. ~10!

FIG. 5. Border between hyperbolic and elliptic orbits at diffe
ent relative orientations of the scatterersa15p/4, a25p/3, a3

5p/2, a452p/3, anda553p/4. The curve labeleda4 is the curve
labeleda in Fig. ~3!. The maximum separation lengths correspon
ing to each angle ared15d554.44,d25d453.6276, andd3

53.141 59. For all cases the two solutions emerge from the p
e51.0,f050. The maximum separation length fora5p/2 is d3

5p ~wheree51.0), which is the maximum vertical displacemen
f
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Solving Eqs.~10! for a particular disk, a set of limiting val-
ues of (u0 ,f0) can be found. Each pair of (u0 ,f0) in the set
is the initial condition for the corresponding tangent orb
However, thanks to symmetry properties of the Lorentz g
we need only a few such sets to partition the phase sp
Indeed, the sets corresponding to the maximum value ou08
for disks 0, 2, 4, and 6 can be used as sets for the minim
value ofu08 for disks 0, 10, 8, and 6. We use here the tra
formation (u0 ,f0)→(2u0 ,2f0). For high enough field,
the combined effects of an external field and a thermo
exclude the existence of the tangent trajectories corresp
ing to the minimum values ofu08 for disks 2 and 4. Accord-
ing to the transformation, they could be the sets for the ma
mum values ofu08 for disks 8 and 10. The previous sets c
again be used to partition the phase space for the sec
symbol. Time reversibility of the system will play a role i
this case@21#. The time reversal is equivalent to the tran
formation (u0 ,f0)→(u01p,f01p) so that the partitioning
for the first symbol can be transformed into the partitioni
for the second symbol. Embedding the two pictures in
phase plane, we obtain the phase space partitioning for
symbols. The partitioning of the phase space is illustrated
Fig. 6. For those partition elements that are hyperbolic
single unstable periodic point exists in each region. The
perbolic regions~4-10! and ~2-8! @and the symmetry related
~8-2! and ~10-4!# may also contain a single elliptic fixe
point. This elliptic fixed point is associated with the none
godic elliptic region. The unstable periodic point of the~4-
10! region is labeled asu and the elliptic fixed point is the
center of the elliptic region. Fore52.35 the elliptic fixed
point is within the (4210) partition, so is physically realiz
able, whereas fore52.25 the elliptic fixed point is pruned by
scatterer number 2. As shown in Fig. 4, for a certain range
fields there will be no elliptic region in the phase space
an unstable fixed point with negative eigenvalues. The str
ture of the non-ergodic elliptic region will be discussed
more detail in the next subsection.

B. Structure of the elliptic region

The mapping (u2 ,f2)5M (u0 ,f0) represents the con
tinuous time dynamics of the Lorentz gas on a surface
section. We take this surface as the phase plane and
collision coordinates as phase variables. The phase por
of the Lorentz gas for periodic orbits of length 2 revea
interesting properties of the dynamics. We concentrate on
elliptic region, in which the eigenvalues of the stability m
trix are complex and the ergodicity of the system brea
down. The center of the elliptic region is the elliptic period
orbit, which is a single point in phase space. Apart from
center, a sufficient number of mappings of an initial con
tion all lie on a closed curve. This indicates the existence
a constraint surface associated with the elliptic orbits in
complete phase space. Further departure from the cente
sults in a splitting of the closed curve into a band of separ
islands on an elliptic band. It is reasonable to expect that
orbit determined by the initial condition has a period equa
the number of islands in the band. Numerical study is c
sistent with this expectation. The center of each ellipse in
band is a periodic orbit of length equal to the number
islands in the band. For some initial conditions we have

-

nt
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band structure in which the separate islands begin to joi
their edges. The joins are hyperbolic points in the ph
space, so they produce elliptic and hyperbolic points in eq
numbers. Numerical study showed that for certain appro
ate initial conditions even the individual ellipses in the ba
can be split into a number of separate rings. This clea
indicates the self-similarity and fractal structure of the orb
in the elliptic region. The number of rings in the band i
creases as the initial condition departs further from the c
ter. But between these bands the trajectory is confined
single ellipse. The emergence of the bands with a gre
number of rings continues until the initial conditions rea
the border of the elliptic region. All of the above featur
closely resemble the behavior of resonant tori in Hamilton
systems under a small perturbation@19#. In Fig. 7 the struc-
ture of the elliptic region ate52.42 andd52.236 is dis-

FIG. 6. Phase space partitioning for the initial conditions
length-2 orbits in the periodic Lorentz gas. For example, those
tial conditions within the region labeled 2-8 produce a trajectory
which the first two symbols are 2 then 8. Fore52.25~a! the elliptic
fixed point lies inside the 2-8 region and is thus pruned by scatt
number 2. The elliptic region that surrounds this point consists
series of ellipses of increasing radius~determined by the initial
point! ending in a curvilinear four sided boundary. As a trajecto
beginning on the boundary, in general, visits many points on
boundary, the fact that some of the boundary is pruned by scat
2 effectively removes all elliptic orbits. The unstable periodic po
of the 4-10 region is labeled u. Fore52.35 ~b! the elliptic fixed
point is within the 4-10 partition so is physically realizable, and
ellipses surrounding that fixed point that lie wholly within the 4-
partition are also physically realizable. For this value of the fie
the boundary of the elliptic region is shaped like an irregular ellip
at
e
al
i-

ly
s

n-
a

er

n

played. For initial conditions near the elliptic fixed point, th
trajectory of the collision point orbits the fixed point. Th
band structure with the least number of islands~seven! ap-
pears near the center. For the next step the trajectory is
fined to an ellipse, outside of which is the band with 8
lands. Periodic orbits of length eight are visible at the cen
of each island. A single ellipse emerges again for next sta
Further departure from the center causes the emergence
band with nine islands that are joined. The outermost ban
the border of the elliptic region and has ten islands. As m
tioned before, the joins are hyperbolic points, so that
trajectory escapes from the neighborhood of the elliptic
gion most rapidly near these points. The trajectory st
from island to island in a clockwise direction. The eigenv
ues for the mapping depend upon the initial condition a
vary from island to island, with approximately half of th
islands making a complex contribution to the eigenvalu
and the rest a real contribution to the eigenvalues. Howe
for at least one of the islands, the initial conditions within t
same island can make either a complex or imaginary con
bution to the eigenvalues, depending upon the initial con
tion. Thus the stability varies from point to point on the te
islands, but the average of the product of the modulii of
eigenvalues is equal to unity, so the Lyapunov exponen
equal to zero.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have determined the range of parame
for which the random Lorentz gas can have a nonergo
component surrounding the length-2 periodic orbits. Th
exists a maximum value for the separation of the disksd,
above which length-2 orbits are hyperbolic for the who

f
i-
r

er
a

e
rer
t

l

,
.

FIG. 7. Structure of the elliptic region withd52.236 ande
52.42. Near the center the orbit consists of seven separate isla
while near the boundary the border consists of ten islands. Betw
the two limits the region is structured with bands of eight and n
islands sandwiched between ellipses. In the case of the eight is
band structure, the eight points composing a length-16 periodic
bit are visible at the center of each island. On the border, traje
ries escape from the elliptic region from the hyperbolic points c
ated where the islands join.
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possible range of fields. On the other hand, the existenc
the elliptic region is possible only for fieldse.1.0. Using
stability analysis we found that the length-2 periodic orb
can be either hyperbolic or elliptic. The initial hyperbol
and elliptic regions have been reported previously, but
existence of a small range of fields for which real negat
eigenvalues occur~and hence a return to hyperbolic orbit!
has not been observed. The hyperbolic orbits appea
single points in the phase space, whereas the elliptic re
occupies a region of nonzero measure. In the elliptic reg
the initial state vector rotates and dilates due to the comp
eigenvalues. This is usually observed in area preserv
maps. Extensive numerical study reveals a highly comp
structure of the elliptic region. The emergence of the hyp
bolic points at the junctions of islands signals chaos wit
os

i,

on

e

-
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e
e

as
on
n
x
g
x
r-
n

the orbit ~hyperbolic instability! and eventually leads to th
breakdown of elliptic behavior and the boundary between
elliptic and chaotic regions. As the initial conditions depa
from the center, elliptic orbits experience subsequ
changes in structure, closely resembling the resonant to
Hamiltonian systems, splitting into separate ellipses, c
finement to a single ellipse, and again splitting into a grea
number of islands. Even the individual islands in the ba
split into smaller islands, manifesting self-similarity, whic
may be the sign of an underlying fractal-like structure.
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